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High-dimensionality poses challenges in several scientific and 
engineering applications such as design, model parameter 
inversion and interpolation.  

Elasticity inversion
Common challenges:

▪Data (measurements)

—High dimensional

—Nonlinearly correlated

—Non-Gaussian

—Noisy and sparse 

—Expensive to obtain 

▪Simulations

—Computationally intensive 

—Models have uncertainties

Need:

— Understand patterns in the data 

and build data driven models  

— Produce reliable and faster 

solutions for timely analysis

Target:  Invert elasticity field 

Data: Displacement measurements

Oil well placement 

Goal: Place injection and production 

wells that maximizes production 

random permeability field   

Subsurface Characterization  

I

P

Goal: Given proxy 

measurements, obtain  

wave velocity 

characterization of the 

subsurface 
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Manifold learning can provide us easy-to-search space and true 
metric 

❑ Manifold: A topological space that resembles Euclidean space near each point

❑ Intrinsic geometry: Geometry experienced by the inhabitants 

❑ Few intrinsic parameters: Length, Area, Gaussian curvatures 

❑ Most of the dataset require non-linear manifold learning techniques to identify  underlying 

manifold

❑ Non-linear manifold techniques explored in this work include diffusion maps and kernel principle 

component analysis (KPCA)

Example: Left original manifold (left), 1D projection 

using diffusion maps (middle), 1D projection using PCA 

(right)

Euclidian distance have different meaning on both 

geometries even though inhabitants have similar 

experience 
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Stochastic intrinsic interpolation: Gaussian process built on the 
manifold uses true metric and provides probabilistic estimates  

❑ Gaussian Process Regression (GPR)/ Kriging acts as interpolation tool for 

standard kernels

❑ Advancements in data acquisition techniques provide high-dimensional 

proxy datasets

❑ GPR produces uninformative predictions as the dimension of predictors 

increases

❑ Soft computing methods such as neural network and support vector 

machines by default will not provide a full probabilistic predictions

❑ We propose a novel intrinsic interpolation method 

❑ We obtain a low dimensional embedding of the data using diffusion maps

❑ GPR is built on the manifold that takes into account of the distance on 

manifold (diffusion distance) instead of the Euclidean distance
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Example: Characterization of geo-physical parameters using a suite of 
well-log measurements

DTSM predictions in Original space (left), Principle 

component space (middle) and  diffusion space (right)

Scatter plot of first three diffusion & principle 

components 

❑ Goal: To build a regression model for the wave velocities 

❑ Direct measurement of wave velocities can be difficult and/or expensive.

❑ Proxy quantities are available at dense locations while wave velocities are measured at sparse 

locations

❑ Out method gives better metric and more data points per dimension while training thus improved 

interpolation accuracy 

Thimmisetty, C. A., Ghanem, R. G., White, J. A., & Chen, X. (2017). High-Dimensional Intrinsic Interpolation Using Gaussian Process 

Regression and Diffusion Maps. Mathematical Geosciences, 1-20.
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Inversion on the manifolds: Manifolds can provide us easy-to-
search space where the inference is computationally cheaper 

❑ Physics constrained data analysis enforces the physics law on the ML algorithm to 

improve the extracted information and provides valuable insight into distinct datasets 

❑ Data integration on an easy-to-search feature space extracted by deep learning 

algorithms reduces the computational complexity of the simulation-driven data 

integration    

❑ Seamless data analysis and data integration  allow us to identify the relevant features 

for the quantities of interest in distinct datasets 

ML algorithms can distinguish channelized and unchannelized sub-surfaces, but they do not account 

for physical law as a constraint for credible data analysis. Our work will couple the nonlinear 

manifold deep learning with physics models.
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Machine learning can help us to transform the proxy data into prior 
knowledge and feature space identification. Adjoint models facilitates 
higher acceptance rate of MCMC chains. 

?

Snapshots generated 

from proxy data using 

multipoint statics

O O

O

O

KPCA motivating examples;

XOR data (top) and arbitrary 

non-linear data (bottom)

Ku=F

Kua=(u-um)

Gradients in 

feature space

Automatic 

differentiation

Adjoint 

model
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We solve distinct challenges in inverse problems via manifold 
learning and constructing adjoint PDEs

Challenge Approach Explanation

High-fidelity 

gradient computation

Adjoint gradient Adjoint PDE allows us to compute gradients 

in the parameter space with two model runs 

(a forward and adjoint simulation)

High dimensionality 

of the parameters

Manifold learning via 

KPCA/Machine learning 

KPCA is used to find a low-dimensional 

feature space where the solution is not an 

outlier in the prior probability space

Sampling non-

Gaussian feature 

random variables

PCE PCE is used to sample KPCA feature 

random variables that are uncorrelated but 

dependent non-Gaussians

Ill-posedness of the 

inverse problem

Bayesian inference Provides a systematic way to address noisy 

and measurements and provides a 

probabilistic inverse solution

Computational 

intractability of the 

MCMC 

Langevin MCMC MCMC require O(n) computational capacity 

while LMCMC need O(n1/3) and inference is 

done in feature space 
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Example: Elasticity inversion  with KPCA and adjoint models 

True (left), KPCA projected (middle) 

and Posterior sample of parameter 

space. 

Prior posterior and true densities of feature random variables in 

PCA space and KPCA space 

MCMC Chains 

Langevin 

MCMC

MCMC

Prior

Posterior

PCA KPCA

Thimmisetty, Charanraj A., et al. "High-dimensional Stochastic Inversion via Adjoint Models and Machine Learning." arXiv 

preprint arXiv:1803.06295 (2018).
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Optimization on the manifolds: Manifolds are adopted to the 
quantity of interest 

❑ In general, the physical system acts a filter (removes the noise in the input) and Quantity 

of interest (QoI) often lies in a subspace of the input parameter space 

❑ We obtain QoI adapted random variables (η) by rotation of the original random variables 

(ξ)

❑ Rotation does not affect accuracy of the solution if the random variables are Gaussian

❑ Rotation can be found via linear or quadratic adaptation   

❑ We obtain a manifold (subspace) in the rotated space (η) and build surrogate in the 

subspace 

Original random variables QoI adapted random variables  

Tipireddy et al. "Basis adaptation in homogeneous chaos spaces." Journal of Computational Physics 259 (2014): 304-317.
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Example: Oil well placement problem 

❑ Goal: To maximize the oil production rate (with some 

confidence, α) by placing injection and production 

wells at optimal locations

❑ Uncertainty in permeability (dim=20) implies we need 

to solve optimization problem under uncertainty 

❑ For each design point we have to construct a surrogate 

model to compute statistics 

❑ Surrogates are built using a manifold adapted to the 

QOI via basis adaptation (about 100 model runs for 

each design point)

❑ Computationally efficient compared to MCMC, variants 

of MCMC and traditional Polynomial Chaos Expansion 

(PCE)

(a) Well placement problem (b)

mean and variance of permeability (c) three

optimal designs (d) (1-α ) vs design

choice and optimal QoI vs (1 -α) (e) pdf

of QoI for the optimal designs

Thimmisetty et al. "Homogeneous chaos basis adaptation for design optimization under uncertainty: Application to the oil well

placement problem." AI EDAM 31.3 (2017): 265-276.
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Conclusions and future research  

❑ Manifold learning is used improve high-dimensional

❖ Stochastic interpolation : Via providing a better metric and more data points per dimension 

while training thus improved the interpolation accuracy 

❖ Stochastic inversion : Via doing inversion on easy-to-search feature space extracted by 

manifold learning reduces the computational complexity of the simulation-driven data 

integration 

❖ Optimization under uncertainty : By building quantity of interest aware manifold thus 

constructing a surrogate with a few model evolutions 

❑ Open Source software (Oct 2018):  Data Assimilation for Stochastic Source Inversion (DASSI)

❑ Developing a novel machine learning (ML) framework for seamless data analysis and data 

integration to identify the relevant features for the quantities of interest in distinct datasets and 

apply physics constraints on ML models
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